0%

best-time-to-buy-and-sell-stock

题目描述

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。如果你最多只允许完成一笔交易(即买入和卖出一支股票一次),设计一个算法来计算你所能获取的最大利润。注意:你不能在买入股票前卖出股票。

题解

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
int maxProfit(vector<int>& prices) {
int t1 = 0, t2 = 1;
int vsize = prices.size();
if (vsize <=1||(vsize==1&&prices[1]<prices[0]))return 0;
int pro = prices[1] - prices[0];
while (t2 < vsize)
{
if (prices[t2] > prices[t2 - 1])
{
for (int i = t1; i < t2; i++)
{
if (prices[t2] - prices[i] > pro)
{
t1 = i;
pro = prices[t2] - prices[i];
}
}
}
t2++;
}
return pro;
}

题目描述

给定一个数组,它的第 i 个元素是一支给定股票第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。注意:你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

题解

既然可以买多次,那就把赚钱的时候都加起来就行了。

1
2
3
4
5
6
7
8
9
10
11
int maxProfit(vector<int>& prices) {
int vsize = prices.size();
if (vsize <= 1)return 0;
int pro = 0;
for (int i = 1; i < vsize; i++)
{
if (prices[i] - prices[i - 1]>0)
pro += prices[i] - prices[i - 1];
}
return pro;
}

==题目描述==

给定一个数组,它的第 i 个元素是一支给定的股票在第 i 天的价格。设计一个算法来计算你所能获取的最大利润。你最多可以完成 两笔 交易。注意: 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

==题解==

链接:https://leetcode-cn.com/problems/best-time-to-buy-and-sell-stock-iii/solution/yi-ge-tong-yong-fang-fa-tuan-mie-6-dao-gu-piao-wen/

6 道股票买卖问题是有共性的,我们通过对第四题(限制最大交易次数为 k)的分析一道一道解决。因为第四题是一个最泛化的形式,其他的问题都是这个形式的简化。

第一题是只进行一次交易,相当于 k = 1;第二题是不限交易次数,相当于 k = +infinity(正无穷);第三题是只进行 2 次交易,相当于 k = 2;剩下两道也是不限次数,但是加了交易「冷冻期」和「手续费」的额外条件,其实就是第二题的变种,都很容易处理。

利用「状态」进行穷举

具体到每一天,看看总共有几种可能的「状态」,再找出每个「状态」对应的「选择」。我们要穷举所有「状态」,穷举的目的是根据对应的「选择」更新状态。

1
2
3
4
for 状态1 in 状态1的所有取值:
for 状态2 in 状态2的所有取值:
for ...
dp[状态1][状态2][...] = 择优(选择1,选择2...)

每天都有三种「选择」:买入、卖出、无操作,用 buy, sell, rest 表示这三种选择。 sell 必须在 buy 之后,那么 rest 操作还应该分两种状态,一种是 buy 之后的 rest(持有了股票),一种是 sell 之后的 rest(没有持有股票)。还有交易次数 k 的限制, buy 还只能在 k > 0 的前提下操作。

这个问题的「状态」有三个,第一个是天数,第二个是允许交易的最大次数,第三个是当前的持有状态(即之前说的 rest 的状态,我们不妨用 1 表示持有,0 表示没有持有)。然后我们用一个三维数组就可以装下这几种状态的全部组合:

1
2
3
4
5
6
7
8
9
dp[i][k][0 or 1]
0 <= i <= n-1, 1 <= k <= K
n 为天数,大 K 为最多交易数
此问题共 n × K × 2 种状态,全部穷举就能搞定。

for 0 <= i < n:
for 1 <= k <= K:
for s in {0, 1}:
dp[i][k][s] = max(buy, sell, rest)

比如说 dp[3][2][1] 的含义就是:今天是第三天,我现在手上持有着股票,至今最多进行 2 次交易。再比如 dp[2][3][0] 的含义:今天是第二天,我现在手上没有持有股票,至今最多进行 3 次交易。

我们想求的最终答案是 dp[n - 1][K][0],即最后一天,最多允许 K 次交易,最多获得多少利润。

状态转移图

状态转移方程:

1
2
3
4
5
6
7
8
9
10
11
12
13
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
max( 选择 rest , 选择 sell )

解释:今天我没有持有股票,有两种可能:
要么是我昨天就没有持有,然后今天选择 rest,所以我今天还是没有持有;
要么是我昨天持有股票,但是今天我 sell 了,所以我今天没有持有股票了。

dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])
max( 选择 rest , 选择 buy )

解释:今天我持有着股票,有两种可能:
要么我昨天就持有着股票,然后今天选择 rest,所以我今天还持有着股票;
要么我昨天本没有持有,但今天我选择 buy,所以今天我就持有股票了。

注意 k 的限制,我们在选择 buy 的时候,把 k 减小了 1,很好理解吧,当然你也可以在 sell 的时候减 1,一样的。

定义 base case

1
2
3
4
5
6
7
8
dp[-1][k][0] = 0
解释:因为 i 是从 0 开始的,所以 i = -1 意味着还没有开始,这时候的利润当然是 0
dp[-1][k][1] = -infinity
解释:还没开始的时候,是不可能持有股票的,用负无穷表示这种不可能。
dp[i][0][0] = 0
解释:因为 k 是从 1 开始的,所以 k = 0 意味着根本不允许交易,这时候利润当然是 0
dp[i][0][1] = -infinity
解释:不允许交易的情况下,是不可能持有股票的,用负无穷表示这种不可能。

新状态只和相邻的一个状态有关,其实不用整个 dp 数组,只需要一个变量储存相邻的那个状态就足够了,这样可以把空间复杂度降到 O(1):

具体实现

第一题,k = 1

1
2
3
4
5
6
7
8
9
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], dp[i-1][0][0] - prices[i])
= max(dp[i-1][1][1], -prices[i])
解释:k = 0 的 base case,所以 dp[i-1][0][0] = 0

现在发现 k 都是 1,不会改变,即 k 对状态转移已经没有影响了。
可以进行进一步化简去掉所有 k:
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], -prices[i])
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
for (int i = 0; i < n; i++) {
if (i - 1 == -1) {
dp[i][0] = 0;
// 解释:
// dp[i][0]
// = max(dp[-1][0], dp[-1][1] + prices[i])
// = max(0, -infinity + prices[i]) = 0
dp[i][1] = -prices[i];
//解释:
// dp[i][1]
// = max(dp[-1][1], dp[-1][0] - prices[i])
// = max(-infinity, 0 - prices[i])
// = -prices[i]
continue;
}
dp[i][0] = Math.max(dp[i-1][0], dp[i-1][1] + prices[i]);
dp[i][1] = Math.max(dp[i-1][1], -prices[i]);
}
return dp[n - 1][0];

空间优化:

1
2
3
4
5
6
7
8
9
10
11
12
13
// k == 1
int maxProfit_k_1(int[] prices) {
int n = prices.length;
// base case: dp[-1][0] = 0, dp[-1][1] = -infinity
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
// dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
// dp[i][1] = max(dp[i-1][1], -prices[i])
dp_i_1 = Math.max(dp_i_1, -prices[i]);
}
return dp_i_0;
}

第二题,k = +infinity

如果 k 为正无穷,那么就可以认为 k 和 k - 1 是一样的。数组中的 k 已经不会改变了,也就是说不需要记录 k 这个状态了

1
2
3
4
5
6
7
8
9
10
int maxProfit_k_inf(int[] prices) {
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, temp - prices[i]);
}
return dp_i_0;
}

第三题,k = +infinity with cooldown

每次 sell 之后要等一天才能继续交易。只要把这个特点融入上一题的状态转移方程即可:

1
2
3
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-2][0] - prices[i])
解释:第 i 天选择 buy 的时候,要从 i-2 的状态转移,而不是 i-1
1
2
3
4
5
6
7
8
9
10
11
12
int maxProfit_with_cool(int[] prices) {
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
int dp_pre_0 = 0; // 代表 dp[i-2][0]
for (int i = 0; i < n; i++) {
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, dp_pre_0 - prices[i]);
dp_pre_0 = temp;
}
return dp_i_0;
}

第四题,k = +infinity with fee

每次交易要支付手续费,只要把手续费从利润中减去即可。改写方程:

1
2
3
4
dp[i][0] = max(dp[i-1][0], dp[i-1][1] + prices[i])
dp[i][1] = max(dp[i-1][1], dp[i-1][0] - prices[i] - fee)
解释:相当于买入股票的价格升高了。
在第一个式子里减也是一样的,相当于卖出股票的价格减小了。
1
2
3
4
5
6
7
8
9
10
int maxProfit_with_fee(int[] prices, int fee) {
int n = prices.length;
int dp_i_0 = 0, dp_i_1 = Integer.MIN_VALUE;
for (int i = 0; i < n; i++) {
int temp = dp_i_0;
dp_i_0 = Math.max(dp_i_0, dp_i_1 + prices[i]);
dp_i_1 = Math.max(dp_i_1, temp - prices[i] - fee);
}
return dp_i_0;
}

第五题,k = 2

1
2
3
原始的动态转移方程,没有可化简的地方
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i])
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i])

必须要对 k 进行穷举:

1
2
3
4
5
6
7
8
9
10
11
int max_k = 2;
int[][][] dp = new int[n][max_k + 1][2];
for (int i = 0; i < n; i++) {
for (int k = max_k; k >= 1; k--) {
if (i - 1 == -1) { /*处理 base case */ }
dp[i][k][0] = max(dp[i-1][k][0], dp[i-1][k][1] + prices[i]);
dp[i][k][1] = max(dp[i-1][k][1], dp[i-1][k-1][0] - prices[i]);
}
}
// 穷举了 n × max_k × 2 个状态,正确。
return dp[n - 1][max_k][0];

这里 k 取值范围比较小,所以可以不用 for 循环,直接把 k = 1 和 2 的情况手动列举出来

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
dp[i][2][0] = max(dp[i-1][2][0], dp[i-1][2][1] + prices[i])
dp[i][2][1] = max(dp[i-1][2][1], dp[i-1][1][0] - prices[i])
dp[i][1][0] = max(dp[i-1][1][0], dp[i-1][1][1] + prices[i])
dp[i][1][1] = max(dp[i-1][1][1], -prices[i])

int maxProfit_k_2(int[] prices) {
int dp_i10 = 0, dp_i11 = Integer.MIN_VALUE;
int dp_i20 = 0, dp_i21 = Integer.MIN_VALUE;
for (int price : prices) {
dp_i20 = Math.max(dp_i20, dp_i21 + price);
dp_i21 = Math.max(dp_i21, dp_i10 - price);
dp_i10 = Math.max(dp_i10, dp_i11 + price);
dp_i11 = Math.max(dp_i11, -price);
}
return dp_i20;
}

第六题,k = any integer

有了上一题 k = 2 的铺垫,这题应该和上一题的第一个解法没啥区别。但是出现了一个超内存的错误,原来是传入的 k 值会非常大,dp 数组太大了。一次交易由买入和卖出构成,至少需要两天。所以说有效的限制 k 应该不超过 n/2,如果超过,就没有约束作用了,相当于 k = +infinity。这种情况是之前解决过的。


自此,跟股票划清界限了。